top of page

Zehr Lab Personnel

Zehr_pic_2011_v2.jpg

Jonathan P. Zehr

Distinguished Professor of Ocean Sciences

e-mail Jon:

jpzehr AT gmail DOT com

​

Link to Jon's Ocean Sciences Profile

​

Link to Jon's Google Scholar Citations

Coale_photo.jpg

Tyler Coale

Postdoctoral Scholar

I investigate the physiology and ecology of eukaryotic marine phytoplankton and their interactions with associated microbes. Of particular interest are the adaptations of marine phytoplankton to the low nutrient conditions typical of the open ocean. These include acquisition proteins, intracellular trafficking, diverse strategies to improve nutrient use efficiency, and microbial partnerships mediated by nutrient bioavailability. My research involves the replication of environmental conditions in the lab in order to connect cellular functioning to the understanding of biogeochemical processes.   

 

Prior to joining the Zehr lab, I obtained a BS in Plant Sciences from the University of California, Santa Cruz. I worked in the chemical oceanography labs of Kenneth Bruland at UCSC and Kristen Buck at the Bermuda Institute of Ocean Sciences. In 2020 I received my PhD from Scripps Institution of Oceanography under the supervision of Andrew Allen, and subsequently worked as a postdoctoral fellow at the J. Craig Venter Institute in La Jolla, CA.

 

email Tyler: 

tcoale AT ucsc DOT edu

IMG_5560_edited.jpg

Michael (Mo) Morando

Postdoctoral Scholar

My research interests revolve around microbial assemblages and their interactions with the environment. Through the integration of ecological and biogeochemical techniques, I assess microbial activity, identify key contributors to various processes, and quantify their respective inputs. During my postdoc in the Zehr lab under Kendra Turk-Kubo, I have expanded this by immersing myself in projects that delve into the physiology and ecology of marine microbes. One central research hypothesis involves non-cyanobacterial diazotrophs (NCDs). Currently, there is debate regarding their activity and importance in the marine environment and addressing this research gap is a key focus of my work at UCSC.

 

To investigate this, we have optimized a dual-visualization method, utilizing gene- and CARD-FISH techniques to identify diazotrophs for single-cell rate measurements using nanoSIMS. Amendment experiments and depth profiles of N2 and C fixation rates were collected in the North Pacific, and we implemented this method to assess the contributions of cyanobacteria and NCDs and the factors influencing this dynamic.

 

Concurrently, I collaborated on the development of a custom workflow that streamlines the processing of next generation sequencing (NGS) data, generating high quality amplicon sequence variants (ASVs) in a unified way. Applying this methodology, we curated and reprocessed all publicly available nifH gene data, creating a comprehensive gene catalog that represents the bulk of the globally distributed diazotrophic community data. Multivariate statistical analysis was used to shed light on the environmental variables influencing the global biogeography of diazotrophs from the ASV to population level.


This workflow, database, and gene catalog can now serve as valuable community resources, establishing a robust framework for studying N2 fixation and diazotrophic diversity, fostering future investigations while ensuring comparability with previous and forthcoming studies.

​

email Mo: 

mmorando AT ucsc DOT edu

W2602_0593.JPG

Esther Mak

Graduate Student

e-mail Esther:

wimak AT ucsc DOT edu

​

Anna.jpg

Anna Voznyuk

Undergraduate researcher

Currently I am helping in determining the optimal temperatures in cultivating unicellular cyanobacterial diazotrophs (culture transfers and taking and running samples through the cytometer) along with other miscellaneous laboratory work. In my time with this research group, I hope to learn how biotic and abiotic environmental factors influence the behaviour of diazotrophs and how evolutionarily such responses came to be. Furthermore, I wish to someday understand how/if those responses are beneficial in terms of the species' survival and the nitrogen cycle and apply the findings to the outlook of the future of our oceans. In the future I aspire to become a researcher in the field of evolutionary genetics focusing on cellular communication but as of now am still on the search for the right "why?" question to guide me.

​

e-mail Anna:

avoznyuk AT ucsc DOT edu

JSolanoHeadshot_edited.jpg

Jocelyn Solano

Undergraduate researcher

I am a current undergraduate student at UC Santa Cruz pursuing a Bachelor’s in Environmental Science. After my bachelor’s, one of my goals is to obtain a Master’s in Microbiology and Environmental Toxicology. My main interest is learning more about ocean acidification and how this process affects the ocean’s microorganisms and how it ultimately affects the ocean's ecosystem.

​

e-mail Jocelyn:

jobsolan AT ucsc DOT edu

IMG_0588.JPG

Britt Henke

Associate Specialist

I am interested in researching and communicating the important work of marine nitrogen (N2) fixing bacteria, especially the unique and ubiquitous Unicellular Cyanobacteria group-A (UCYN-A). N2-fixing bacteria support primary production by supplying nitrogen (N) to the vast oligotrophic areas of the world’s oceans. In this way N2-fixing bacteria effect global nutrient cycles and support phytoplankton oxygen production, which accounts for half of all the oxygen we breathe! By communicating our interdependence with marine microbes, I hope to inspire scientific understanding and inquiry including broad acceptance of and honest discussion about human-induced climate change. In my capacity as a Lab Specialist I do science, support the research of graduate students and postdocs, mentor undergraduates, and generally keep the lab running, including ensuring that our lab is a safe and friendly working environment for all.

​

e-mail Britt:

bhenke AT ucsc DOT edu

PastedGraphic-4.jpg

Jonathan Magasin 

Specialist

My goal is to improve our understanding marine microbial communities in their natural environments.  To this end, I enjoy creating software tools to help analyze large data sets derived from marine environmental samples (metagenomic and metatranscriptomic) produced by next-generation sequencing and our MicroTOOLs microarray.  I am also interested in how the staggering number of public marine environmental data sets archived in "omics" repositories can be used to discover marine microbes that are widespread but have been overlooked due to biases toward studying cultivable types.

​

email Jonathan:  

jmagasin AT ucsc DOT edu

IMG_0194.JPG

Kendra Turk-Kubo

Project Scientist

My current research focuses on understanding the environmental factors driving the diversity, biogeography and activity of marine nitrogen-fixing microbes. Vast areas of the sunlit surface ocean have no detectable nitrogen, yet are teeming with microbial life. Life in these “ocean deserts” is made possible, in part, by microbes that are able to convert dinitrogen (N2) gas into biomass through the process of N2 fixation. This process has been known to be important in the marine environment for several decades now, yet we are still in the early stages of understanding the organisms responsible. Many N2-fixers have yet to be isolated in culture, so my research relies on applying cultivation independent techniques to detect and study these cryptic microbes. I am involved in multiple collaborative research projects funded by the National Science Foundation (NSF), the Gordon and Betty Moore Foundation (GBMF) and the Simons Foundation. My research goals within these projects are focused on: 1) Identifying the quantitative significance of a unique N2-fixer that lives in symbiosis with another single-celled algae (UCYN-A/haptophyte symbiosis) to N budgets in coastally-influenced marine waters; 2) Determining the environmental controls on N2 fixation in the UCYN-A symbiosis, and how their activity may be linked to the composition and activity of the broader microbial community in the North Pacific; 3) Adapting  super resolution ion beam imaging (srIBI) to enable localization and imaging of subcellular structures and characterization of metabolic exchanges in aquatic symbioses; and 4) Determining whether non-cyanobacterial microbes with the genetic capability to fix N2 are active and important marine N2-fixers to gain a better understanding of whether these organisms should be considered in ecological models of marine N2 fixation. 

 

e-mail Kendra:

kturk AT ucsc DOT edu

​

Link to Kendra's Google Scholar Citations

​

Link to Kendra's Research Gate Profile

bottom of page